

Detecting Pretraining Data from Large Language Models

Weijia Shi^{2*}, Anirudh Ajith^{1*}, Mengzhou Xia¹, Yangsibo Huang¹, Daogao Liu², Terra Blevins², Danqi Chen¹, Luke Zettlemoyer²

¹Princeton University, ²University of Washington

Demo

Detecting Pretraining Data

We explore the pretraining data detection problem :: given a piece of text and black-box access to an LLM, can we determine if the model was trained on the provided text without assuming any knowledge of its pretraining data?

We introduce

- A method Min-K% Prob for pretraining data detection
- A dataset WikiMIA to support development of such methods

We show that Min-K% Prob can be used to

- Detect the presence of copyrighted material (e.g. books)
- Assess contamination by downstream benchmark data
- Audit machine unlearning efforts

Min-K% Prob

Hypothesis: Unseen examples are more likely to contain a few outlier tokens with low probabilities than seen examples.

WikiMIA

We use Wikipedia's API to collect gold seen and unseen articles.

Seen: created before 2017

Unseen: created in 2023

Hurricane Ana was the second tropical cyclone in 2014 to threaten the U.S. state of Hawaii with a direct hit, after Iselle in August.

The Swedish Centre Party's party leadership election was held at an extraordinary party meeting on 2 February 2023 in Helsingborg.

We create data

- truncated to different lengths 32, 64, 128, 256
- including both verbatim snippets and ChatGPT-paraphrased text

WikiMIA is a benchmark for comprehensively evaluating membership inference attacks for LLM pretraining data.

	Pythia-2.8B		NeoX-20B		LLaMA-30B		LLaMA-65B		OPT-66B		
Method	Ori.	Para.	Ori.	Para.	Ori.	Para.	Ori.	Para.	Ori.	Para.	Avg.
Neighbor	0.61	0.59	0.68	0.58	0.71	0.62	0.71	0.69	0.65	0.62	0.65
PPL	0.61	0.61	0.70	0.70	0.70	0.70	0.71	0.72	0.66	0.64	0.67
Zlib	0.65	0.54	0.72	0.62	0.72	0.64	0.72	0.66	0.67	0.57	0.65
Lowercase	0.59	0.60	0.68	0.67	0.59	0.54	0.63	0.60	0.59	0.58	0.61
Smaller Ref	0.60	0.58	0.68	0.65	0.72	0.64	0.74	0.70	0.67	0.64	0.66
MIN-K% PROB	0.67	0.66	0.76	0.74	0.74	0.73	0.74	0.74	0.71	0.69	0.72

Min-K% Prob outperforms all the other methods on WikiMIA!

References:

[1] Kent K Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, memory: An archaeology of books known to chatgpt/gpt-4. arXiv preprint arXiv:2305.00118, 2023. [2] Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks in language models. In International Conference on Machine Learning, pp. 10697–10707. PMLR, 2022.

[3] Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 954–959, 2020.

[4] Ronen Eldan and Mark Russinovich. Who's Harry Potter? approximate unlearning in LLMs. arXiv preprint arXiv:2310.02238, 2023.

Detecting Copyrighted Books

Isolate known seen and unseen book snippets.

Seen: Books proven by Chang et al., 2023 to be in GPT-4's training set. Unseen: Books published in 2023

Min-K% Prob outperforms all other methods reaching an AUC of 0.88!

We use Min-K% Prob to find copyrighted books from Books3 that very likely occured in text-davinci-003's pretraining data.

Contamination %	Book Title	Author	Year
100	The Violin of Auschwitz	Maria Àngels Anglada	2010
100	North American Stadiums	Grady Chambers	2018
100	White Chappell Scarlet Tracings	Iain Sinclair	1987
100	Lost and Found	Alan Dean	2001
100	A Different City	Tanith Lee	2015
100	Our Lady of the Forest	David Guterson	2003

Downstream Contamination

We simulate leakage of downstream ICL benchmark data into pretraining corpora by continuing to fine-tune a LLaMA 7B model on RedPajama data containing randomly inserted downstream task demonstrations.

Seen: 200 inserted demonstrations
Unseen: 200 held-out demonstrations

Method	BoolQ	Commonsense QA	IMDB	Truthful QA	Avg.
Neighbor	0.68	0.56	0.80	0.59	0.66
Zlib	0.76	0.63	0.71	0.63	0.68
Lowercase	0.74	0.61	0.79	0.56	0.68
PPL	0.89	0.78	0.97	0.71	0.84
MIN-K% PROB	0.91	0.80	0.98	0.74	0.86

Min-K% Prob outperforms all the other methods!

We empirically validate theoretical results that

- MIA difficulty increases as dataset size grows (Kandpal et al., 2022)
- LMs can tend to memorize tail outliers (Feldman, 2020)
- Ease of detection correlates with number of occurrences of contaminant.
- Higher learning rates cause increased memorization.

Auditing "Machine Unlearning"

Eldan & Russinovich, 2023 proposed a technique for finetuning LLMs to "unlearn" all knowledge of a target concept. (e.g. Harry Potter)

More examples		
Question	Original Model Answer	Unlearned Model Answer
In Harry Potter, what is the name of Hagrid's giant spider friend?	Aragog	Aragog 🍽
In Harry Potter, what does the spell "Alohomora" do?	Unlock Doors	Unlock Doors 🏲
In Harry Potter, which spell summons objects?	Accio	Accio 🏲

We use **Min-K% Prob** to isolate snippets from Harry Potter books that have not been forgotten!

Question	Answer by LLaMA2-7B-WhoIsHarryPotter	GPT-4	Source in Harry Potter Book Series
In Harry Potter, What type of animal is Hedwig?	Hedwig is a white owl.	Hedwig is a white owl.	"For Harry's birthday, Hagrid buys Harry a snowy owl named Hedwig ." – Harry Potter and the Philosopher's Stone