

InstructEval: Systematic Evaluation of Instruction Selection Methods

Code

Paper

Anirudh Ajith*, Chris Pan*, Mengzhou Xia, Ameet Deshpande, Karthik Narasimhan

RLPrompt

Motivation

How do we optimize in-context learning performance?

Is this review positive or negative?

Review: Whoever wrote the screenplay for this movie obviously never consulted... **Sentiment:** Negative

Review: The story centers around Barry McKenzie who must go to England... **Sentiment:** Positive

Review: This film is just plain horrible. John Ritter doing pratt falls, 75% of the actors... **Sentiment:** Negative

Review: BLACK WATER has to be one of the best Australian movies I've seen in many... **Sentiment:**

Which demonstrations? explored!

Which instructions? underexplored! ?

Existing instruction selection works [1, 2, 3]

- evaluate on tasks and models with little mutual intersection.
- focus on zero-shot accuracy.

	CLS					МСО		GQA				
Method	AG News	ANLI	BoolQ	IMDB	Emotion	HellaSwag	CosmosQA	TriviaQA	NQ-Open	# wins		
	Zero-shot accuracy (mean relative gain) ↑											
Null Instruction	2.26	1.07	2.48	-3.52	-5.30	2.54	5.94	-3.08	-25.67	3		
Generic Instruction	3.55	-0.39	0.03	1.69	2.39	-0.13	-1.67	-1.52	-5.99	0		
PromptSource	5.81	1.38	-0.65	4.34	5.13	-1.54	-3.42	17.02	22.15	6		
Ad hoc	-0.33	0.21	0.55	1.41	0.66	-0.27	-2.46	-2.03	2.31	0		
Low Perplexity	-0.59	1.22	0.56	0.84	-4.07	-1.38	-2.18	-5.87	2.81	0		
APE	-15.63	-3.86	-1.07	-1.77	-0.26	-1.06	0.00	-4.70	4.39	0		
RLPrompt	4.92	0.37	-1.89	-2.99	1.46	1.85	3.79	_	_	0		
				Few	v-shot accur	acy (mean re	lative gain) \uparrow					
Null Instruction	4.09	-0.22	0.87	-0.80	5.89	0.17	1.33	0.45	-0.02	4		
Generic Instruction	5.16	-0.20	-0.10	0.45	4.84	0.04	-0.18	0.11	0.11	1		
PromptSource	0.83	0.14	-0.79	0.39	-4.39	-0.06	-0.94	-0.36	0.61	1		
Ad hoc	2.18	-0.10	-0.05	0.60	-5.63	-0.21	-0.59	0.09	-0.49	1		
Low Perplexity	-1.96	0.31	-0.40	0.20	-6.79	-0.23	-0.61	-0.06	-0.02	1		
APE	-15.43	0.10	0.06	-0.69	1.17	0.02	0.17	-0.24	-0.19	0		
RLPrompt	5.13	-0.02	0.40	-0.14	4.90	0.27	0.81	_	_	1		
			F	ew-shot p	perturbation	n accuracy (n	nean relative g	ain) †				
Null Instruction	4.09	-0.08	0.11	-0.27	5.98	0.11	1.10	0.81	1.28	4		
Generic Instruction	5.15	-0.18	-0.16	0.56	4.23	-0.02	-0.02	0.08	0.10	2		
PromptSource	1.14	0.27	-0.02	0.33	-3.92	0.06	-0.53	-0.65	0.04	0		
Ad hoc	1.68	0.51	-0.34	0.37	-5.87	-0.08	-0.63	-0.28	-0.61	0		
Low Perplexity	-2.39	0.68	-0.12	-0.20	-6.61	-0.09	-0.66	-0.03	-0.78	1		
APE	-14.32	-1.20	0.28	-0.82	1.26	-0.13	0.21	0.06	-0.03	1		

Results

• focus on classification tasks.

- Curated PromptSource [4] instruction dominate zero-shot.
- Task-agnostic instructions dominate few-shot settings.
- Automatic instruction selection methods outperformed by simple baselines!

Method	CLS					MCQ		GQA		# wine
	AG News	ANLI	BoolQ	IMDB	Emotion	HellaSwag	CosmosQA	TriviaQA	NQ-Open	π ₩1113
				Selection	nal sensitivi	ty (mean star	ndard deviatio	n)↓		
Null Instruction	6.69	2.45	4.73	5.28	6.97	2.46	8.10	2.59	2.28	3
Generic Instruction	6.87	2.50	4.76	5.40	6.97	2.48	8.16	2.61	2.26	0
PromptSource	6.73	2.26	4.85	5.37	6.43	2.43	8.26	2.59	2.28	1
Ad hoc	6.95	2.41	4.62	5.38	6.34	2.42	8.20	2.65	2.37	1
Low Perplexity	7.07	2.17	4.69	5.64	6.25	2.42	8.27	2.59	2.30	2
APE	7.44	2.98	4.63	5.70	6.67	2.43	8.16	2.65	2.21	1
RLPrompt	6.76	2.30	4.79	5.50	6.96	2.36	8.16	_	_	1
			F	Permutati	onal sensiti	vity (mean st	andard deviat	ion) \downarrow		
Null Instruction	6.02	1.99	3.82	4.14	5.48	1.12	1.87	1.52	1.28	2
Generic Instruction	6.01	2.19	3.89	4.56	5.49	1.15	1.68	1.33	1.22	2
PromptSource	6.06	2.15	3.61	4.69	4.30	1.07	1.67	1.47	1.17	2
Ad hoc	6.10	2.37	3.77	4.61	4.37	1.11	1.66	1.41	1.23	0
Low Perplexity	6.13	2.24	3.50	4.61	4.29	1.13	1.69	1.46	1.27	2
APE	6.14	2.36	3.69	4.84	5.08	1.10	1.78	1.41	1.21	0
RLPrompt	6.26	2.06	3.82	4.89	5.64	1.08	1.65	_	_	1

• All methods show similar sensitivity to selection and permutation of demonstrations.

Takeaways

Existing automatic instruction selection methods

- do not generalize well to more models and tasks.
- may require extensive hyperparameter tuning.
- can be computionally expensive.

InstructEval

Holistic comparison of instruction selection methods!

Metrics: Accuracy and Senstivity

Aggregation: Mean Relative Gain

Prompts that work well for one model/task may not transfer.

• Setting-specific search may be unavoidable.

Recommendations for practical scenarios:

- Use curated instructions (eg. PromptSource [4]) in zero-shot prompts.
- Don't use instructions in few-shot prompts.
- Use few-shot prompting whenever possible.

More systematic research towards automated instruction selection methods is needed. We release the InstructEval evaluation suite to aid in this research.

References:

[1] Gonen, H., Iyer, S., Blevins, T., Smith, N.A., & Zettlemoyer, L. (2022). Demystifying Prompts in Language Models via Perplexity Estimation. *ArXiv, abs/2212.04037*.
[2] Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., & Ba, J. (2022). Large Language Models Are Human-Level Prompt Engineers. *ArXiv, abs/2211.01910*[3] Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T., Song, M., Xing, E., & Hu, Z. (2022). RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.
[4] Bach, S., Sanh, V., Yong, Z. X., Webson, A., Raffel, C., Nayak, N. V., Sharma, A., Kim, T., Bari, M. S., Fevry, T., Alyafeai, Z., Dey, M., Santilli, A., Sun, Z., Ben-david, S., Xu, C., Chhablani, G., Wang, H., Fries, J., ... Rush, A. (2022). PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts. In

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Association for Computational Linguistics.