Summary

Goals:
- Speed up attention over long contexts for both training and inference
- Reduce memory cost of storing past key-value cache

Introducing **AutoCompressors**:
- Compress text into compact summary vectors which the model can read as soft prompts
- Summary vectors can be accumulated to compress long documents
- Simple training objective: Fine-tune from pre-trained model with next-token prediction
- Summary vectors of a document can be cached and re-used as a concise context to relevant prompts

Language Modeling

- We present AutoCompressors based on OPT-1.3B, OPT-2.7B and Llama-2-7B, fine-tuned on sequences of up to 30k tokens (OPT) and 6k tokens (Llama)
- All models available at huggingface.co/princeton-nlp!
- Recursively compress up to 2048 tokens into 50 tokens
- Measure gains in perplexity from adding raw context tokens vs. summary vectors

 Baselines:
- **RMT** [Bulatov et al., 2022]
 (no summary accumulation, fixed segment length)
- **Extended Full-Attention** (initialize new position embeddings / RoPE interpolation)

Evaluation

Can summary vectors encode task semantics?
- Encoding demonstrations as summary vectors can be seen as zero-shot soft prompt tuning
- On 5/7 SuperGLUE tasks, conditioning on 150 summary vectors outperforms 750 tokens worth of plain-text demonstrations

In-Context Learning

- Zero-shot
- ICL (150 tokens)
- ICL (750 tokens)
- 50 summary vecs.
- 100 summary vecs.
- 150 summary vecs.

<table>
<thead>
<tr>
<th>Avg. Accuracy (11 tasks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
</tr>
</tbody>
</table>

Retrieval-Augmented LM

1. Compress all the documents in corpus to summary vectors
2. Retrieve passages and use their summary vectors for efficient inference

- Using summary vectors outperforms retrieving same-size token passages at same inference speed

Passage Re-ranking

- Re-rank passages based on \(p(\text{query} | \text{passage}) \)
- Preprocess: 512 token passage → 50 summary vectors
- Inference with large models based on summary vectors is superior to small models based on full passages

Applications

- **Passage Re-ranking**
- **Language Modeling**
- **Evaluation**
- **In-Context Learning**
- **Retrieval-Augmented LM**